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This paper discusses a class of monotone (nonoscillatory) interpola- 
tion schemes convenient for applications with a variety of problems 
arising in computational fluid dynamics. These interpolators derive from 
the flux-corrected-transport finite difference advection schemes. It 
is shown that any known dissipative advection algorithm may be 
implemented as an interpolation scheme. The resulting interpolation 
procedure retains the formal accuracy of the advection scheme and 
offers such attractive computational properties as preservation of a sign 
or monotonicity of the interpolated variable. The derived class of inter- 
polators consists of schemes of different levels of accuracy, efficiency, 
and complexity reflecting a rich variety of available advection schemes. 
Theoretical considerations are illustrated with idealized examples and 
selected applications to atmospheric fluid dynamics problems. 0 1992 

Academic Press. Inc. 

1. INTRODUCTION 

A complaint about traditional polynomial-fitting 
methods used for interpolating scalar fields defined on a dis- 
crete mesh is that they often lead to spurious numerical 
oscillations in regions of steep gradients of the interpolated 
variables. In order to suppress computational noise, 
characteristic of quadratic and higher-order interpolation 
schemes, one often implements a smoothing procedure, 
or adopts a linear (first-order) interpolation technique. 
These, however, introduce excessive numerical diffusion 
that smears out sharp features of interpolated fields. A more 
advanced approach invokes the so-called shape-preserving 
interpolation, which incorporates appropriate constraints 
on the derivative estimates used in the interpolation 
schemes (cf., [ 1 ] for a review). In this paper we consider an 
alternate approach and supplement the existing shape- 
preserving interpolation procedures with a class of schemes 
derived from monotone advection algorithms. 

Finite-difference schemes for solving the advection 
equation 

* The National Center for Atmospheric Research is sponsored by the 
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at an arbitrary point (xi, t”) of a discrete mesh in RM x R’ 
(assume a scalar variable 4(x, t) is advected with a flow field 
v(x, t) solonoidal in M spatial dimensions), were often 
derived via Lagrangian arguments requiring interpolation 
of the advected field at the departure point (x0, t” - ’ ) 
of a parcel’s trajectory arriving at (Xi, t”) (e.g., [2-4]). 
However, such arguments are not necessary; and, to our 
knowledge, all advection algorithms can be (and the 
majority have been) derived, analyzed, and studied, in 
abstraction from Lagrangian interpretation and without 
invoking an explicit interpolation procedure. In particular, 
a variety of advanced, monotone advection algorithms (cf., 
[S, 63 for reviews) were developed in the spirit of flux- 
corrected-transport (FCT)-an Eulerian concept which 
imposes appropriate constraints on fluxes from higher-order 
conservative advection schemes to assure monotonicity of 
the transported variables [7-91. Starting with a shape- 
preserving interpolator, one can derive a monotone advec- 
tion algorithm via Lagrangian arguments [ 1); however, 
given a variety of existing advection schemes with attractive 
properties, the inverse problem of designing a shape- 
preserving interpolator starting with a monotone transport 
scheme appears to be an intriguing alternative. 

The central theoretical issue concerns the formal equiv- 
alence of the finite difference operators for interpolation and 
advection on discrete meshes. The general idea of such an 
equivalence is certainly not new. The arbitrary-lagrangian- 
Eulerian (ALE) models for fluids often refer to such a rela- 
tionschip in the rezoning (remapping) stage of the computa- 
tional procedure [ 10, 111. However, the arguments invoked 
are partially intuitive, which leaves a certain margin of 
uncertainty with respect to the exact versus the approximate 
aspects of the equivalence. The remapping prodecures of 
ALE models are strictly conservative and optionally 
monotone. Although powerful, they are complex and com- 
putationally expensive and thus recommended only for 
those applications where the exact conservation is essential 
[ 121. Relaxing this constraint considerably simplifies the 
theoretical and practical aspects of the “advection-inter- 
polation” equivalence; designing a strictly conservative 
interpolation operator requires analysis in terms of volume 
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and surface integrals, whereas operators which conserve 
interpolated fields only with accuracy to the truncation 
error emerge from simple arguments in terms of contour 
integrations. The theoretical basis for the “advection-inter- 
polation” equivalence exploited herein represents a special 
case of a more general theory of transport algorithms [ 131. 
However, since the focus of that work was on different 
issues, the utility of the development therein for designing a 
class of interpolation schemes may not be immediately 
obvious. 

The paper is organized as follows. Section 2 discusses 
mathematical foundations of the “advection-interpolation” 
equivalence. Section 3 summarizes general aspects of inter- 
polation schemes derived from finite difference advection 
algorithms and discusses details of the implementation of 
FCT advection algorithms as monotone interpolators. 
Section 4 illustrates the theoretical considerations with 
examples of applications. A summary of our conclusions is 
presented in Section 5. 

2. “ADVECTION-INTERPOLATION” EQUIVALENCE 

Consider the following interpolation problem: Let us 
assume that a sufficiently continuous field $: RM + R’ is 
known a priori in xi points of a uniform mesh in R”. For 
clarity, we restrict ourselves to regular meshes with a 
constant grid interval AX = (AX’, dX2, . . . . dX”) such that 
xi = io AX, although the results for irregular grids easily 
follow (cf., [ 131 for a discussion). The problem addressed is 
to provide an estimate of $, with certain desired accuracy, 
in a point of interest x0 noncoincident, in general, with any 
of xi’s. A traditional approach is to expand $ in, say, the p th 
order Taylor sum about some xi from a local neighborhood 
of x0 and provide adequate estimates of the derivatives 
using information available on the grid, or, equivalently, to 
evaluate $ at x0, based on the assumption that II/ tits a p th 
order Lagrangian polynomial in between the grid points 
[4]. Consider, however, an alternate approach. 

As a consequence of the Stokes’ theorem 

Il/txO) -  Il/(xi) = jc ldx ovIcl(x)t (2) 

where C denotes an arbitrary contour connecting the point 
of interest x0 with an arbitrary xi of the computational grid. 
Exploiting the arbitrariness of the contour selection in (2), 
we choose for C the line segment of the parametric equation 

X(Xi, Z)= -(Xi-X0)5 + Xi9 (3) 

where the parameter ZE [0, 11. Implementing (3) in (2) 
gives 

where 

Since for every fixed x0 and xi the first element of the scalar 
product appearing under the integral in (4) is constant, (4) 
may be rewritten as 

where 

u = xi - X”. (7) 

Equation (6) represents the formal integral of the 
equation 

(8) 

over the r interval [0, 11 at xi grid-point. In other words, 
(6) is a formal solution to the advection equation of the 
form (1) in which the free parameter T plays the role of a 
time-independent variable, and the vector U defined in (7) 
plays the role of the velocity field. Therefore, the interpola- 
tion problem has been expressed as the equivalent advection 
problem. In principle, the formal solution (6) may be 
approximated using any known advection algorithm for (1). 
The truncation error of such an approximation represents 
the error of estimating $ at the point of interest x0. In the 
following section we discuss the suitability and attractive- 
ness of different advection schemes for implementation as 
interpolation algorithms in (6), as well as some particular 
adjustments of FCT advection schemes required for their 
efficient implementation as monotone interpolators. 
Before this, however, we would like to draw the reader’s 
attention to certain theoretical aspects of the “advection- 
interpolation” equivalence. 

One might wonder how (6) is related to the traditional 
interpolation approach which relies on the truncated Taylor 
expansion. Recall that the untruncated (exact) Taylor 
formula at the pth order of expansion of $(x + h) about x 
contains the (p + l)th remainder 

&,+,(x, h)= j; ~9(p+‘)~(,+,.h)~~).h”-” 
( 

(9) 

(Theorem VII.9.3 in [ 141). Employing the untruncated 
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zeroth-order Taylor expansion of $(x0) about an arbitrary 
xi results in 

Including -(x,-Xi) under the integral and using the 
definitions (7), (5) and (3), reproduces (6). Thus, the 
conceptual difference between the traditional approach 
and the one advocated herein might be interpreted as a 
different exploitation of the Taylor formula. The traditional 
approach employs the truncated, say the p th order, Taylor 
expansion with adequate approximations of the derivatives, 
whereas the current approach assumes zeroth order, but 
untruncated Taylor expansion with a p th-order approxima- 
tion of the first remainder. Apparently, instead of deriving 
(6) from (2), one could obtain it directly from the Taylor 
formula. The derivation of (6) from (2) is, however, more 
general; the degree of freedom associated with a contour 
selection in (3) leads to different versions of (6). In par- 
ticular, selecting the contour consisting of a sequence of the 
line segments parallel to spatial coordinates leads to the 
alternate-direction (time-split) representation of (6). 

3. INTERPOLATION SCHEMES DERIVED FROM 
ADVECTION ALGORITHMS 

3.1. General Aspects 

The formal solution (6) to the interpolation problem may 
be evaluated with the help of any known explicit advection 
algorithm for (1) 

~7=~;-‘-dY(~, U, O(Xi, t”-‘)), (11) 

where 
v At v’ At v2 At vM At 

a=hX3 dx’? zy “*) AX.%! > 
(12) 

is a local Courant number vector, and the finite difference 
operator dY identifies an advection scheme defined by its 
particular dependence on the values of 4 and a available on 
the mesh in a neighborhood 0 of the (xi, f-l) grid point. 
(Since the arguments of dY may be arbitrarily staggered 
both in time and space, any finite difference advection 
algorithm may be written in the symbolic form (1 l).) 

The convergent implementation of an advection 
algorithm (11) for the numerical evaluation of (6), or 
equivalently (8), necessarily requires the resulting Courant 
number 

_ u u’ u= UM 
a=bX- ( dx’2 Z’ ...’ 3) (13) 

(recall that AT E 1) to be appropriately bounded; i.e., 

lliill ~WER’, (14) 

where the constant %? depends on the algorithm employed 
and the norm selected. Choosing an arbitrary grid point Xi 

as 

AX2, . . . . Nl(-j$) AX”), (15) 

where NZ denotes the nearest integer value, ensures that 

(16) 

which is sufficient for the stability of a majority of known 
finite-difference advection schemes in M d 2 spatial dimen- 
sions. Using definitions (15), (13), (7), and (5) the resulting 
interpolation algorithm may be compactly written as 

~(%)=1cI(c%I)-~~ $, ‘xo;i;x”, O([xol)). 
( 

(17) 

Although in principle any explicit advection scheme 
might be considered in (17), the multiple-time-level (e.g., 
centered-in-time) algorithms are not attractive for applica- 
tions-since V+ in (6) is not immediately available at inter- 
mediate points of the contour (3). In contrast, the class of 
the forward-in-time (dissipative) schemes is perfectly 
suited for (17). Note that the constancy of & allows 
for straightforward, alternate-direction applications of 
one-dimensional schemes without degrading the formal 
accuracy of their constant coefficients limit (which is the 
alternative argument to that in the paragraph ending 
Section 2, for the exactness of the time-splitting). The latter 
has important implications for applications. First, in contrast 
to the arbitrary dimensional case, there is a great variety of 
methods suitable for integration of the one-dimensional, 
constant coefficient advection problem. Second, the 
boundedness of effective Courant numbers in (16) is 
sufftcient for the stability of all one-dimensional dissipative 
schemes (known to the authors); this implies the stability of 
a time-split algorithm for an arbitrary M. Third, when com- 
pared to fully multidimensional algorithms, the alternate- 
direction implementation of a one-dimensional scheme 
has the virtue of considerable simplicity, especially when 
advanced monotone techniques are concerned. For 
illustration, we provide two elementary, one-dimensional 
examples of the interpolation algorithm (17) using common 
advection schemes. 

581/101/2-14 
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Consider a finite-difference approximation in (17) using 
the popular, second-order-accurate Lax-Wendroff advec- 
tion scheme [ 151 (alias Leith [2], Crowley [3] ) 

Identifying the Courant number fl with E = ([.x0] - sO)/dX 
in (17), and accordingly with (3) and (5), di with II/( [x,,]), 
and 4: with $(x0), the Lax-Wendroff algorithm gives 

l//(x0) = I)( [x0]) -L cxol - xo 
2 AX 

which is the second-order finite difference approximation to 
the second-order Taylor expansion of +(x0) about [x0], 

Similar examples, up to the tenth-order of accuracy of 
approximation, may be provided, employing formulae from 
pages 541-542 of the article by Tremback et al. [4]. 

Another special case (a counterexample) of linite- 
difference approximation in (17) employs the popular 
centered-in-time-and-space (leapfrog) advection scheme 

Similarly, as in the previous example, the Courant number 
/I corresponds to E, 4: to I,+( [x,]), and 4; to $(x0). This is, 
however, insufficient for a meaningful approximation in 
( 17), since the leapfrog scheme requires 4 i:, corresponding 
to $([xo]-~&Ax+Ax), which are not explicitly 
available on the computational grid. Therefore, the leapfrog 
scheme is not suitable for (17). In principle, one might 
approximate II/( [x0] - 4 6 AX+ AX), using the information 
available on the grid, but this brings us back to direct 
implementation of the dissipative advection schemes. For 
instance, assuming that 

$( [x0] - f d AX+ AX) 

+([xo])++(l-fa) 

x (tj( [x0] + AX) - I/( [x0] - AX)) + ; (1 - $ a)* 

x(~([xol+dX)-~~(C~ol~+9~C~ol-~~~~ 
Wa) 

and 

x ($( [so] + AX) - I)( [x0] - AX)) + $ ( 1 i { ii 

reduces the resulting algorithm to a direct application of the 
Lax-Wendroff scheme; i.e., the current example reduces to 
the one discussed previously. 

3.2. FCT Interpolation Schemes 

Insofar as the linear, dissipative advection algorithms are 
concerned there is no particular gain in using (17). The first 
example in Section 3.1 indicates that the interpolation 
schemes derived from such algorithms may be obtained 
alternatively through more traditional arguments invoking 
truncated Taylor expansion, or equivalently, polynomial 
fitting [4]. However, where preservation of monotonicity 
and/or sign of the interpolated variable is concerned, 
formula (17) becomes a useful tool. For instance, sign- 
preserving interpolation may be easily achieved by direct 
implementation of the simple positive definite advection 
scheme of Smolarkiewicz [16]. Although the extended 
versions of this scheme (MPDATA family of algorithms 
[ 17, 18, 9, 191) include strictly monotone approximations 
and appear to be competitive tools for evaluation of a 
general transport problem [9], they are not particularly 
attractive for applications as shape-preserving inter- 
polators. In the special case of the constant coefficients limit, 
which is the case in (17) the FCT schemes built upon 
the high-order-accurate, constant-grid-flux dissipative algo- 
rithms of Tremback et al. [4] are excellent tools insofar as 
overall accuracy, efficiency, and simplicity are concerned 
[9, 131. Consequently, they are especially attractive for 
applications with the interpolation formula (17). Since the 
FCT formalism has been reviewed recently [9], below we 
summarize the FCT procedure only to the extent necessary 
to draw the reader’s attention to particular adjustments 
required for its efficient implementation with (17). Given the 
exactness of the alternate-direction representation of (17) it 
is sufficient to consider only one-dimensional FCT schemes. 
For compactness of numerical equations we shall use the 
same notation as in [9]. 

An FCT advection scheme may be compactly written as 

qy+‘=@“;+‘-(d,+,,-.2i ,Q), (23) 

where @ denotes a low-order, monotone solution to ( 1) and 
2 is the antidiffusive flux limited such as to ensure that the 
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equations, which relates stability of the resulting scheme not 
to the magnitude of the flow field but to its variability along 
trajectories (29). In a variety of atmospheric applications, 
flows are sufficiently smooth to enable semi-Lagrangian 
integrations of (30) with Courant numbers exceeding unity 
even by orders of magnitude. This leads to considerable 
savings of the computational effort and improved accuracy 
of integrations (due to lesser accumulation of truncation 
error over the reduced number of the time steps required). 

In meteorological literature, a common method of 
solving (29) invokes an iterative solution of the implicit 
midpoint rule 

X0-Xi=V(+(Xo+Xi), +(to+t))(t,-l)), (31) 

with the first guess x0 = Xi + v(Xi, to)(to - t); the two 
iterations suffice for the second-order-accurate solution, 

, (a) 

FIG. 1. The rotating cone test from [9, 16-191. Both solutions are 
shown after six revolutions of the cone. The reference spikes in the upper- 
right and the lower-left corners represent the initial- and minus half of the 
initial-height of the cone placed on the large constant background. 
Plate (a) shows the semi-Lagrangian solution obtained with monotone 
interpolator; the number of the time-steps is 377 (the maximum Courant 
number is 10). Plate (b) displays the Eulerian solution obtained with 
monotone MPDATA scheme; the number of the time-steps is 3768 (the 
maximum Courant number is 1). 

providing the Courant number variation is appropriately 
bounded along the trajectory [20]. Since the midpoint 
1 (x0 + xi) appearing on the r.h.s. of (31), in general, does 
not coincide with a grid point, the velocity field must be 
interpolated to the midpoint’s position. Therefore, the entire 
semi-Lagrangian algorithm for solving (30) requires inter- 
polation procedures for both the velocity field and the 
advected scalar. 

For illustration, we utilize the rotating cone test from 
[9, 16-191; this test has been used to document the proper- 
ties of MPDATA advection schemes. The two solutions in 
Fig. 1 are shown after six revolutions of the cone whose 
initial height is equal to the size of the reference spike in the 
upper right corner and whose radius at the base is equal to 
15 grid intervals. The entire transported field consists of the 
cone and the large constant background (equal 25 initial 
heights of the cone). Figure la shows the semi-Lagrangian 
solution obtained with the interpolater (17) implementing 
the FCT version of the fourth-order-accurate dissipative 
scheme [4] (discussed in [9]). For comparison, Fig. lb 
shows the Eulerian solution obtained with the non- 
oscillatory option of the third-order-accurate MPDATA 
scheme [ 191. In the figures the two solutions are hardly dis- 
tinguishable. Both solutions are monotone and excellently 
preserve the initial shape of the cone. There are, however, 
two important differences. In order to ensure stable integra- 
tions, the Eulerian scheme requires 3768 time steps, whereas 
the semi-Lagrangian scheme allows for a ten times larger 
temporal increment (the maximum Courant number in 
Fig. la is 10, which is close to the limit imposed by the 
convergence of iterations in (3 1)) and therefore requires one 
order of magnitude fewer time steps. Overall, the semi- 
Lagrangian solution is about six times “cheaper” than the 
Eulerian solution. The price to be paid for this gain in com- 
putational effort is the loss of exact conservation. The 
Eulerian solution conserves the integral of the transported 
field with accuracy to the round-off error, whereas the semi- 
Lagrangian solution exhibits a small, but not negligible, 
conservation error. The relative conservation error for the 
cone itself (i.e., disregarding a constant background which is 
free of error but falsely improves normalized accuracy 
measures) is about 1% after the six revolutions of the cone. 

The results discussed clearly illustrate the utility of the 
advocated approach. The reader interested in a comparative 
performance of the interpolators (17) employing different 
advection schemes is referred to [13], where a number of 
oscillatory and monotone algorithms have been tested in 
the context of semi-Lagrangian transport on the sphere. 

4.2. Local Mesh Refinement: Nested Grid Computations 

An accurate and efficient interpolation procedure con- 
stitutes a vital element of any local mesh refinement scheme 
that requires frequent mappings of fields between coarse 
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solution (23) is free of local extrema absent in the low-order 
solution 

Ai+ 1:2 = min(L /3t, PJ, ,)[A,+ d + 
+min(l, Bj, B~+,)CAi+,..,l , (24) 

where 

A i+,..z--Hi+,:r-FL,+, 2, (25) 4. EXAMPLES OF APPLICATIONS 

with FH and FL denoting fluxes from a high-order and a 
low-order advection scheme, respectively. [ ] + = max(O, ) 
and [ ] ~ = min(O, ) in (19) are the positive- and negative- 
part operators, respectively, and 

G’6a), Wb) 

where A!N AOUT are the absolute values of the total 
incoming’and outgoing A-fluxes (25) from the ith grid box, 
respectively. E is a small value, e.g., - 10P15, allowing for 
efficient coding of p-ratios when AfN or APUT vanish. The 
limiters dyAX and 4,“‘” define monotonicity of the scheme 
(i.e., by design 4f”‘” <@+’ <dyAX), and they are 
traditionally specified [S] as 

The reader interested in the formal derivation of a general 
FCT algorithm is referred to [9]. 

A shape-preserving interpolation scheme requires less 
restrictive monotonicity constraints than a conservative 
advection scheme. The minima over fi ratios appearing in 
(24) ensure that the antidiffusive flux attributed to i+ l/2 
position on the grid does not contribute to generation of 
spurious extrema, either in gridbox i or in gridbox i + 1. 
However, monotonicity of the interpolation scheme (17) 
only requires that 4: + ’ = $(x0) is free of spurious extrema. 
Consequently Eq. (24) may be replaced by 

Ai+ I:2 =min(l, Bf)[Aj+,j21+ +min(l, B/, )CAi+lj21p. 
(247 

Furthermore, since the effective flow field in (17) is 
constant, and therefore incompressible, the limiters in (27) 
may be simplified to 

where the redundant dependence of the limiters on @: + ’ 

has been retained to ensure strictly nonnegative values of 
the /I ratios in (26) (cf., Section 3.1 in [9]). Since the low- 
order solution may always be written as an old value minus 
divergence of fluxes from the low-order scheme, the entire 
algorithm consisting of (23) (24’), (25), (26), and (27’) is in 
the form of a general advection scheme (1 I ). 

Further in this section we discuss examples of applica- 
tions of the monotone interpolators to selected problems of 
atmospheric fluid dynamics. The performance of the 
algorithms is illustrated with the examples addressing two 
distinct classes of practical applications. The first example 
concerns the semi-Lagrangian advection of a passive scalar; 
it may be considered as a prototype for pollutant transport 
in a predetermined flow field. The second example deals 
with a problem of local mesh refinement within a context of 
a strongly stratified, hydrostatic flow past a three-dimen- 
sional hill. 

4.1. Semi-Lagrangian Advection 

The invariance of a scalar quantity 

$(x, 1) = ‘4(x,, to), 

along a parcel’s trajectory, 

(28) 

xO(tO)=x(t)+jr”ydt, 
, 

(29) 

constitutes a basic element in a variety of fluid dynamics 
applications. The issue addressed is to approximate t&x, t) 
at all xi points of a discrete mesh, assuming that at some 
earlier time to, $ and the velocity field v are known at all 
xI)s. In other words, we are seeking an approximate solution 
to the advection problem 

d+ a* --g=y$+v.v+=o, 

posed on the discrete grid. Approximate solutions to (30) 
via approximations to (29) and (28) are often referred to as 
semi-Lagrangian advection schemes [ 11. A general concept 
of such a solution involves two distinct steps. The first step 
determines departure points xis of the trajectories arriving 
at xls through approximate solutions to (29), and the 
second step interpolates Il/‘s at x0?. An apparent advantage 
of the semi-Lagrangian approach is that the restrictive 
Courant-Friedrichs-Lewy (CFL) stability criterion for the 
partial differential equation (30) is replaced by a weaker 
condition, characteristic of methods for ordinary differential 



MONOTONE INTERPOLATION SCHEMES 437 

and line meshes. In order to minimize interpolation errors, 
the boundaries of a fine-meshed domain should avoid 
regions of strong gradients of the interpolated variables 
[21]. In applications addressing evolution of natural 
atmospheric flows, such a constraint is rarely satisfied as the 
line meshes are often spawned according to a particular 
focus of interest (e.g., weather prediction in a certain region) 
rather than to criteria based upon flow structure or 
estimates of local truncation errors. Since concerns are 
usually with complex nonlinear flows, the computational 
noise due to communication between meshes arises at the 
boundaries as well as in the interior of the overlapping 
domains. Because of the U/NH, 

where U, 
H, and N are the flow speed, height of the obstacle, and the . . . . Brunt-Vaisala frequency, respectively). Salient features of 
such flows include the separation and reversal of the lower 
upwind stream, and the formation of intense vertically 
oriented vortices on the lee side of the hill [22-241. The only 
difference between the two simulations is in the interpola- 
tion procedure employed in the mesh refinement scheme. 
The first experiment utilizes the interpolator (17) imple- 
menting the FCT version of the fourth-order-accurate dis- 
sipative scheme [4] (this interpolator has been already 
considered in Section 4.1), and the second experiment 
utilizes the same interpolator but without the FCT 
monotonicity adjustment. Since a goal of this section is to 
demonstrate potential advantages of the monotone i’nter- 
polators, we shall comment only briefly on other physical 
and numerical aspects of the experiments performed. 

In general terms, the experiments discussed herein are 
similar to those reported in [23, 241. The bell-shaped hill 

z(~,y)=H[l+(~+)2+(~+)2]-~‘~, (32) 

with the horizontal scale L = 25 x lo3 m and height H = 
O.l2L, is placed in the uniform flow (U= 5 mss’) with 
Fr = 0.15. The relevant, hydrostatic equations of motion are 
integrated using a version of the Pennsylvania State Univer- 
sity/National Center for Atmospheric Research community 

model [25,26]. The model equations are cast in Lambert 
conformal map coordinates and the normalized pressure 
(sigma) coordinate in the vertical. The finite-difference for- 
mulation of the model equations employs centered-in-time- 
and-space approximations and a split-explicit time 
integration scheme [27] for efficient treatment of the fast 
gravity modes. The boundary conditions incorporate the 
free-slip/rigid-lid and the free-surface assumptions at the 
bottom and top boundaries of the model, respectively. The 
sponge layer in the upper portion of the model absorbs 
vertically propagating gravity waves, and the relaxation 
scheme [28] is employed at lateral boundaries of the model 
domain. The two-way-interactive mesh refinement scheme 
allows for an arbitrary number of overlapping and trans- 
lating rectangular grids aligned with the model coordinates; 
the mesh refinement ratio of the temporal and spatial grid 
increments is common for all meshes. 

The current experimental setup employs three horizon- 
tally nested, stationary grids with the refinement ratio equal 
to 3. All three meshes are centered with respect to the hill’s 
origin but the center of finest mesh is shifted downstream by 
1.4L. In the horizontal, the model domain (the coarsest 
mesh) covers 28.8L x 28.8L; the first and second nested 
grids cover the subdomains of 9.6L x 9.6L and 3.2L x 3.2L, 
respectively. All three meshes are resolved with 48 x 48 grid 
intervals. The vertical domain (common to all three meshes) 
is covered with 16 sigma layers of interval Aa varying from 
0.05 in the lower part of the model to 0.1 at the top which 
coincides with -3.5H. The gravity wave absorber fills the 
top w 1.2H portion of the model domain. 

The characteristic features of the flow (lee vortices and 
upwind separation) are established after dimensionless time 
Ts tU/L z 2 following the initialization. Figures 2 and 3 
compare the surface flows from the two experiments after 
Tz4.5, when the flow is approximately steady (only the 
results from the two inner meshes are displayed). Insofar as 
the gross features of the flow are concerned (Figs. 2a and 
3a), the two solutions are similar, and they are both in 
qualitative agreement with the results reported in [23,24]. 
Inasmuch as the two simulations employ slightly different 
numerics, it is not surprising that the two realizations of the 
flow differ in details (Figs. 2b and 3b). Although it is dif- 
ficult to assess a physical significance of the differences, the 
advantages of using monotone interpolators in the mesh 
refinement scheme are apparent. In the simulation with an 
oscillatory interpolator (Fig. 2), there is a clear notion of a 
noise development at the inflow/outflow boundaries of the 
finest mesh (Fig. 2b), whereas the flow simulated with a 
monotone interpolator passes through the boundaries in a 
smooth and orderly fashion. The analysis of the pressure 
fields’ histories (not shown) indicates that the noise 
amplifies with time in the simulation with the oscillatory 
interpolator. This tendency of growth indicates potential 
“trouble” in a longer time simulation and a need for some 
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FIG, 2. Quasi-steady surface streamlines for the experiment with low 
Froude number flow past a bell-shaped hill using an oscillatory inter- 
polator in the mesh refinement scheme. The two panels show the flows 
within the tirst and the second nested subdomains of the model. The 
contour interval of the obstacle’s height is d H. 

additional smoothing in the mesh refinement scheme. Since 
the degree of smoothing required is, in general, problem 
dependent and unknown a priori, the implementation of the 
monotone interpolator in the mesh refinement scheme is a 
preferable alternative. 

The advantages of the monotone interpolators become 

(b) 
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FIG. 3. As in Fig. 2 but using a monotone interpolator in the mesh 
refinement scheme. 

even more apparent in applications addressing natural 
atmospheric flows. Therein, the error growth depends on a 
variety of physical parameterizations (e.g., water substance 
phase-change processes), some of which are very sensitive to 
small-scale disturbances. In such applications, traditional 
smoothers exhibit a tendency for excessive smearing of 
many of the realistic features propagating into or through 
the interacting meshes. 
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5. SUMMARY 

The practice of computational fluid dynamics often 
requires accurate as well as nonoscillatory interpolation 
procedures. Such procedures, often referred to as shape- 
preserving interpolation, may be employed to design 
monotone advection transport algorithms [ 11. This paper 
poses an inverse problem. A variety of monotone advection 
schemes with attractive properties has been developed over 
the last two decades abstracting from any arguments that 
invoke explicit interpolation procedure [5, 61. Our goal is 
to provide a formalism allowing the exploitation of these 
advection algorithms as shape-preserving interpolators. The 
central theoretical issue concerns a formal equivalence of 
the advection and interpolation operators on discrete 
meshes. The general idea of such an equivalence has often 
been referred to in the rezoning (remapping) stage of ALE 
models for fluids [ 10, 1 I]; however, the arguments invoked 
were partially intuitive. Releasing the exact conservation 
constraint of the ALE models simplifies the theoretical and 
practical aspects of the equivalence. Through elementary 
arguments exploiting either the Stokes theorem or the 
untruncated Taylor formula at zeroth order of expansion, 
one may show that the solution to an interpolation problem 
can be expressed as a formal integral of the advection equa- 
tion (1). As a consequence, the interpolating operator on a 
discrete mesh may be represented by an advection scheme 
(formula (17)), in which the local Courant number vector is 
replaced by the normalized displacement between a grid 
point and a point of interest to the interpolation procedure. 
The accuracy of the resulting interpolation scheme is that of 
the advection scheme employed. 

Among a variety of available advection schemes, only the 
dissipative (forward-in-time) algorithms are suitable for 
practical applications. Since the effective velocity field is 
constant for each point of interest to the interpolation 
procedure, these advection schemes retain their formal 
accuracy of the constant coefficients limit. Constancy of the 
effective velocity in an arbitrary-dimensional problem 
allows for a straightforward alternate-direction implemen- 
tation of one-dimensional advection schemes without intro- 
ducing errors characteristic of the time-split advection 
procedures in variable flows. The exactness of the time- 
splitting may be also shown by means of more general 
arguments invoking Stokes’ theorem. 

Insofar as the linear dissipative advection schemes are 
concerned, there is no particular gain from such an exercise, 
as the resulting interpolators may be alternately derived 
with the help of more traditional arguments invoking either 
the truncated Taylor formula or Lagrangian polynomial fit- 
ting [4]. However, when the preservation of monotonicity 
and/or sign of the interpolated variable is essential, then the 
interpolation formula (17) becomes a useful tool. For 
instance, a sign-preserving second-order-accurate interpola- 

tion may be easily achieved using a simple scheme [ 161, 
whereas a variety of monotone (and sign-preserving) 
interpolation schemes of different overall accuracy and 
complexity levels may be generated using FCT versions of 
dissipative schemes [4]. An efficient implementation of 
the FCT advection schemes requires minor adjustments 
(simplifications) in the traditional formulae. 

The identified class of monotone interpolation schemes 
offers simple, powerful, and convenient tools for those 
applications where the exact conservation constraint is not 
essential. The examples of applications to selected, diverse 
problems of atmospheric fluid dynamics demonstrate the 
utility of the advocated approach. 
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